Septal stimulation attenuates hippocampal seizure with subregion specificity

Author:

Zhang Qingyang12,Wang Yu1,Wang Fei1,Jiang Dongxiao1,Song Yingjie1,Yang Lin1,Zhang Mengdi1,Wang Yi13,Ruan Yeping12,Fang Jiajia3,Fei Fan1ORCID

Affiliation:

1. Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou China

2. Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou China

3. Department of Neurology, The Fourth Affiliated Hospital, School of Medicine Zhejiang University Yiwu China

Abstract

AbstractObjectiveDeep brain stimulation (DBS) is a promising approach for the treatment of epilepsy. However, the optimal target for DBS and underlying mechanisms are still not clear. Here, we compared the therapeutic effects of DBS on distinct septal subregions, aimed to find the precise targets of septal DBS and related mechanisms for the clinical treatment.MethodsAssisted by behavioral test, electroencephalography (EEG) recording and analyzing, selectively neuronal manipulation and immunohistochemistry, we assessed the effects of DBS on the three septal subregions in kainic acid (KA)‐induced mouse seizure model.ResultsDBS in the medial septum (MS) not only delayed generalized seizure (GS) development, but reduced the severity; DBS in the vertical diagonal band of Broca (VDB) only reduced the severity of GS, while DBS in the horizontal diagonal band of Broca (HDB) subregion showed no anti‐seizure effect. Notably, DBS in the MS much more efficiently decreased abnormal activation of hippocampal neurons. EEG spectrum analysis indicated that DBS in the MS and VDB subregions mainly increased the basal hippocampal low‐frequency (delta and theta) rhythm. Furthermore, ablation of cholinergic neurons in the MS and VDB subregions blocked the anti‐seizure and EEG‐modulating effects of septal DBS, suggesting the seizure‐alleviating effect of DBS was dependent on local cholinergic neurons.SignificanceDBS in the MS and VDB, rather than HDB, attenuates hippocampal seizure by activation of cholinergic neurons‐augmented hippocampal delta/theta rhythm. This may be of great therapeutic significance for the clinical treatment of epilepsy with septal DBS.Plain Language SummaryThe optical target of deep brain stimulation in the septum is still not clear. This study demonstrated that stimulation in the medial septum and vertical diagonal band of Broca subregions, but not the horizontal diagonal band of Broca, could alleviate hippocampal seizure through cholinergic neurons‐augmented hippocampal delta/theta rhythm. This study may shed light on the importance of precise regulation of deep brain stimulation therapy in treating epileptic seizures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3