Affiliation:
1. Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine Chengde Medical University Chengde Hebei China
2. Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization Beijing Normal University Beijing China
Abstract
AbstractAt different time scales, a species will experience diverse distribution changes. For Epimedium brevicornum Maxim, the phenomenon is obvious, but the understanding of the spatial dynamics of E. brevicornum under distinct time scales is poor. In this study, we modeled the potential distribution for E. brevicornum for five time scales, 1970–1979, 1980–1989, 1990–1999, 2000–2009, and 2010–2019, with different occurrence data, and the Kuenm package was used to optimize the parameter combination. Then, SDM tools and a Venn diagram were utilized to simulate the changes in highly suitable areas and spatial dynamics, respectively. Comprehensive results show that temperature seasonality (BIO4, 37.54%) has the greatest effect on the distribution of E. brevicornum, followed by minimum temperature (TMIN, 21.42%). The areas of distribution for E. brevicornum are 35.06 × 105 km2, 25.7 × 105 km2, 67.64 × 105 km2, 27.29 × 105 km2, and 9.87× 105 km2, which are mainly concentrated in Gansu, Shaanxi, Shanxi, and Henan, respectively. In addition, the largest regions for expansion, stability, and contraction under various time scales are 5.6 × 105 km2, 3.54 × 105 km2, and 3.47 × 105 km2, respectively. These changes indicate that approximately 7.96% of the regions are highly stable, and three critical counties, Wanyuan, Chenggu, and Hechuan, and Xixiang, have become significant areas for migration. Overall, our results indicate that there are different spatial distribution patterns and dynamics for E. brevicornum for different time scales. Given these results, this study also proposes comprehensive strategies for the conservation and management of E. brevicornum, which will further improve the current resource utilization status.