Nitrogen removal and microbial community variation in a shallow constructed wetland with Fe–C porous filter material as substrate

Author:

Chu Shuyi12,Cao Zhuangzhuang1,Su Zhongping3,Xiao Jibo12ORCID,Li Jun4

Affiliation:

1. National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution Wenzhou University Wenzhou China

2. Institute for Eco‐environmental Research of Sanyang Wetland Wenzhou University Wenzhou China

3. Wenzhou Drainage Co. Ltd. Wenzhou China

4. College of Architecture and Energy Engineering Wenzhou University of Technology Wenzhou China

Abstract

AbstractThis study aims to examine the nitrogen removal characteristics and microbial community variation at low hydraulic retention time (HRT) in a shallow constructed wetland (SCW) using iron–carbon (Fe–C) porous filter material (PFM) as substrate. Effects of influent nitrogen forms and chemical oxygen demand (COD)/N ratio on nitrogen removal performance at HRT of 1 day were investigated. Results showed that total nitrogen (TN) removal declined with the decrease of influent NH4+‐N‐to‐NO3‐N ratio. When the influent NH4+‐N/NO3‐N ratio was 0.1, TN removal decreased by 15.4% compared with that at ratio of 2.0. The increase of influent COD/N ratio enhanced NO3‐N reduction, and TN removal reached 74.5% at influent COD/N ratio 7.0. The microbial community was analyzed for the biofilm samples on Fe–C PFM at front (WF), middle (WM), and back (WB) of SCW. Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were dominant bacteria phyla. The relative abundance of genera involved in the nitrification and denitrification decreased with the influent flow. The iron autotrophic denitrifying and macromolecular organics degrading bacteria were abundant in the middle and back of SCW. Microbial nitrification and denitrification, plant uptake, and plant synergism contributed to 86.3%, 7.41%, and 19.9% of N removal, respectively. These results demonstrated that the SCW with Fe–C PFM as substrate was efficient in nitrogen removal at low HRT.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3