Ultra‐strong and biodegradable nanocomposite fibers of poly(butylene adipate‐co‐terephthalate)/cellulose nanocrystal prepared by dry‐jet wet spinning

Author:

Lee Youngeun1,Kim Min Woo2,Kim Hyo Jeong13,Kim Jin Kyung1,Won Tae Kyung1,Miyawaki Jin45,Chae Han Gi2,Eom Youngho13ORCID

Affiliation:

1. Department of Polymer Engineering Pukyong National University Busan Republic of Korea

2. School of Materials Science and Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea

3. Department of Organic and Nano Engineering Hanyang University Seoul Republic of Korea

4. Interdisciplinary Graduate School of Engineering Sciences Kyushu University Fukuoka Japan

5. Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan

Abstract

AbstractFiber‐based products constitute a significant portion of plastic waste and cause environmental damage. In particular, discarded sanitary masks and fishing gear disintegrate into microfiber plastics, posing a significant threat to human health and ecosystems. In this study, we developed robust biodegradable nanocomposite fibers of poly(butylene adipate‐co‐terephthalate) (PBAT)/cellulose nanocrystals (CNCs) (1 and 2 wt%) through dry‐jet wet spinning, by using dimethyl sulfoxide (DMSO) as a common solvent. The control PBAT fibers exhibit remarkable mechanical performance with tensile strength and toughness of 160.0 MPa and 43.0 MJ m−3, respectively. CNC addition has a toughening effect with slightly reduced strength but enhanced toughness (148.8 MPa and 69.0 MJ m−3, respectively, for 2 wt% CNC); their mechanical performances are superior to those of previously reported PBAT‐based materials. The remarkable performance of the fibers is attributed to a highly oriented structure with a total draw ratio of 15 after post‐hot drawing. The control and nanocomposite fibers exhibit spot‐like patterns in 2D wide‐angle x‐ray diffraction patterns with Herman's orientation factor of 0.54–0.58. The theoretical Hansen solubility parameter confirmed the poor chemical affinity between the PBAT and CNC. Nonetheless, the rheological characterization revealed that well‐dispersed CNCs with DMSO produced a physical network in the PBAT matrix, resulting in the toughening effect. Such robust nanocomposite fibers consisting of fully biodegradable components are promising alternatives to nondegradable nylon and polyester fibers.Highlights Robust biodegradable nanocomposite fibers of PBAT and CNC are prepared. Nanocomposite fibers are dry‐jet wet spun using DMSO as a common solvent. PBAT fibers exhibit strength and toughness of 160.0 MPa and 43.0 MJ m−3. 2 wt% CNC toughens the PBAT fibers with an enhanced toughness of 69.0 MJ m−3. Rheological results confirm the toughening effect of well‐dispersed CNC in PBAT.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3