Infrastructure tools to support an effective Radiation Oncology Learning Health System

Author:

Kapoor Rishabh1ORCID,Sleeman William C1ORCID,Ghosh Preetam1,Palta Jatinder1ORCID

Affiliation:

1. Department of Radiation Oncology Virginia Commonwealth University Richmond Virginia USA

Abstract

AbstractPurposeRadiation Oncology Learning Health System (RO‐LHS) is a promising approach to improve the quality of care by integrating clinical, dosimetry, treatment delivery, research data in real‐time. This paper describes a novel set of tools to support the development of a RO‐LHS and the current challenges they can address.MethodsWe present a knowledge graph‐based approach to map radiotherapy data from clinical databases to an ontology‐based data repository using FAIR concepts. This strategy ensures that the data are easily discoverable, accessible, and can be used by other clinical decision support systems. It allows for visualization, presentation, and data analyses of valuable information to identify trends and patterns in patient outcomes. We designed a search engine that utilizes ontology‐based keyword searching, synonym‐based term matching that leverages the hierarchical nature of ontologies to retrieve patient records based on parent and children classes, connects to the Bioportal database for relevant clinical attributes retrieval. To identify similar patients, a method involving text corpus creation and vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) are employed, using cosine similarity and distance metrics.ResultsThe data pipeline and tool were tested with 1660 patient clinical and dosimetry records resulting in 504 180 RDF (Resource Description Framework) tuples and visualized data relationships using graph‐based representations. Patient similarity analysis using embedding models showed that the Word2Vec model had the highest mean cosine similarity, while the GloVe model exhibited more compact embeddings with lower Euclidean and Manhattan distances.ConclusionsThe framework and tools described support the development of a RO‐LHS. By integrating diverse data sources and facilitating data discovery and analysis, they contribute to continuous learning and improvement in patient care. The tools enhance the quality of care by enabling the identification of cohorts, clinical decision support, and the development of clinical studies and machine learning programs in radiation oncology.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3