A planning strategy may reduce the risk of heart diseases and radiation pneumonia: Avoiding the specific heart substructures

Author:

Feng AiHui123,Duan YanHua123,Yang ZhangRu3,Shao Yan3,Wang Hao3,Chen Hua3,Gu HengLe3,Huang Ying123,Shen ZhenJiong3,Wang Xufei12,Xu ZhiYong3

Affiliation:

1. Institute of Modern Physics Fudan University Shanghai China

2. Key Laboratory of Nuclear Physics and Ion‐beam Application (MOE) Fudan University Shanghai China

3. Department of Radiation Oncology Shanghai Chest Hospital School of Medicine Shanghai Jiao Tong University Shanghai China

Abstract

AbstractBackgroundDose to heart substructures is a better predictor for major adverse cardiac events (MACE) than mean heart dose (MHD). We propose an avoidance planning strategy for important cardiac substructures.Material and methodsTwo plans, clinical and cardiac substructure‐avoidance plan, were generated for twenty patients. Five dose‐sensitive substructures, including left ventricle, pulmonary artery, left anterior descending branch, left circumflex branch and the coronary artery were chosen. The avoidance plan aims to meet the target criteria and organ‐at‐risk (OARs) constraints while minimizing the dose parameters of the above five substructures. The dosimetric assessments included the mean dose and the maximum dose of cardiac substructures and several volume parameters. In addition, we also evaluated the relative risk of coronary artery disease (CAD), chronic heart failure (CHF), and radiation pneumonia (RP).ResultsPearson correlation coefficient and R2 value of linear regression fitting demonstrated that MHD had poor prediction ability for the mean dose of the cardiac substructures. Compared to clinical plans, an avoidance plan is able to statistically significantly decrease the dose to key substructures. Meanwhile, the dose to OARs and the coverage of the target are comparable in the two plans. In addition, it can be observed that the avoidance plan statistically decreases the relative risks of CAD, CHF, and RP.ConclusionsThe substructure‐avoidance planning strategy that incorporates the cardiac substructures into optimization process, can protect the important heart substructures, such as left ventricle, left anterior descending branch and pulmonary artery, achieving the substantive sparing of dose‐sensitive cardiac structures, and have the potential to decrease the relative risks of CAD, CHF, and RP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3