Environmental and topographic drivers of amphibian phylogenetic diversity and endemism in the Iberian Peninsula

Author:

Paúl Maria João123ORCID,Rosauer Dan4,Tarroso Pedro12,Velo‐Antón Guillermo125,Carvalho Sílvia B.12

Affiliation:

1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão Universidade do Porto Vairão Portugal

2. BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal

3. Departamento de Biologia, Faculdade de Ciências Universidade do Porto Porto Portugal

4. Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity Analysis The Australian National University Canberra Australian Capital Territory Australia

5. Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97) Universidade de Vigo Vigo Spain

Abstract

AbstractUnderstanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water‐energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water‐energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water‐energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3