Artificial neural network (ANN) modeling for simultaneous removal of a binary mixture of Pb(II) and Cu(II) by cobalt hydroxide nano‐flakes

Author:

Zolgharnein Javad1ORCID,Shariatmanesh Tahere1,Farahani Saeideh Dermanaki1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences Arak University Arak Islamic Republic of Iran

Abstract

AbstractA three‐layer artificial neural network (ANN) model was developed to predict the efficiency of Cu(II) and Pb(II) ion removal from aqueous solution by cobalt hydroxide nano‐flakes. It is based on experimental sets obtained from a D‐optimal design. The input variables to the neural network were as follows: the initial concentration of Pb(II) and Cu (II) ions (mg L−1), initial pH, and sorbent mass (g). The configuration of the backpropagation neural network for both Cu(II) and Pb (II) ions was a tangent sigmoid transfer function (tansig) at the hidden layer, linear transfer function (purelin) at the output layer, and Levenberg–Marquardt training algorithm (LMA). ANN‐predicted results were very close to the experimental results with a coefficient of determination (R2) of 0.9970 and mean square error (MSE) 0.000376. Analysis based on the ANN model indicated that sorbent mass appeared to be the most influential factor in the adsorption process of Cu(II) and Pb(II). Characterization of the cobalt hydroxide nano‐flakes and possible metal ions‐adsorbent interactions were confirmed by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), and scanning electron microscopy (SEM).

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3