CD44 Expressed on Cancer-Associated Fibroblasts Is a Functional Molecule Supporting the Stemness and Drug Resistance of Malignant Cancer Cells in the Tumor Microenvironment

Author:

Kinugasa Yumi1,Matsui Takahiro12,Takakura Nobuyuki13

Affiliation:

1. Department of Signal Transduction Research Institute for Microbial Diseases Osaka University, Osaka, Japan

2. Department of Hematology and Oncology Osaka University Graduate School of Medicine, Osaka, Japan

3. Japan Science and Technology Agency, Tokyo, Japan

Abstract

Abstract Cells constituting the tumor microenvironment are attractive targets for developing new cancer therapies. Here we show that cancer-associated fibroblasts (CAFs) support tumor growth in vivo and maintain the stemness of cancer stem/initiating cells in an in vitro model using an established CAF cell line. We found that CD44 is abundantly expressed on CAFs. This molecule is a cancer stem cell marker in several tumors, but its role in tumorigenesis when expressed by CAFs has not been investigated. It is generally accepted that hypoxic and hyponutritional conditions are triggers of cancer malignancy. We found that CAFs strongly express CD44 in hypoxic and avascular areas in the tumor and that its expression on established CAFs is upregulated under hypoxic and hyponutritional conditions in vitro. In addition, CAF CD44-positivity in tumor tissues was increased after treatment with inhibitors of angiogenesis. Using cocultures and tumor sphere formation assays, CAFs from wild-type mice were found to sustain the stemness of cancer stem/initiating cells, while CD44-deficient CAFs did not. Furthermore, CD44 was involved in malignant cancer cell drug resistance mechanisms. In conclusion, our study suggests that CD44 on CAFs is a functional molecule contributing to the maintenance of cancer stem cell populations in the tumor microenvironment. Stem Cells  2014;32:145–156

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3