Impact of failure mode uncertainty on seismic fragility and collapse risk of buildings

Author:

Opabola Eyitayo A.1,Liel Abbie2,Elwood Kenneth3

Affiliation:

1. Department of Civil and Environmental Engineering University of California Berkeley California USA

2. Department of Civil Environmental and Architectural Engineering University of Colorado Boulder Colorado USA

3. Department of Civil and Environmental Engineering University of Auckland Auckland New Zealand

Abstract

AbstractLaboratory tests on nominally identical reinforced concrete (RC) components have demonstrated the existence of failure mode variability and its significant impact on the strength and deformation capacity of RC components. In comparison with record‐to‐record and modeling uncertainties, the impact of failure mode uncertainty on the seismic fragility of RC structural systems has received less attention. This study presents a methodology for propagating failure mode variability in the probabilistic seismic assessment of RC structural systems. In the proposed methodology, strength hierarchy calculations are used to identify the structural system's susceptibility to failure mode variability. Subsequently, a number of segregate models corresponding to the number of failure mode combinations are developed. Nonlinear response history analyses of the segregates are used to quantify each segregate's seismic fragility and risk. Finally, the total probability theorem is used to derive the combined seismic fragility of the structure. The proposed methodology is demonstrated using an older‐type (pre‐1970s) four‐story RC frame building archetype with ground floor columns susceptible to failure mode switch between flexure‐ and flexure‐shear mechanisms. The results show that the seismic fragility and collapse risk of the RC buildings with failure mode variability significantly changes when failure mode variability is propagated. In the example, accounting for component‐level failure mode variability can shift the median collapse fragility by more than 20%. Furthermore, the collapse risk (i.e., probability of collapse in 50 years) of the archetype changed by at least 30%. Similar changes may be observed in other types of structures with significant failure mode uncertainty, not limited to RC structures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3