Pre‐tactical convection prediction for air traffic flow management using LSTM neural network

Author:

Jardines Aniel1ORCID,Soler Manuel1ORCID,García‐Heras Javier1ORCID,Ponzano Matteo2,Raynaud Laure2ORCID

Affiliation:

1. Department of Aerospace Engineering Universidad Carlos III de Madrid Leganés (Madrid) Spain

2. CNRM Météo‐France, CNRS Toulouse France

Abstract

AbstractThis paper aims to explore machine learning techniques for post‐processing high‐resolution Numerical Weather Prediction (NWP) products for the early detection of convection. Data from the Arome Ensemble Prediction System and satellite observations from the Rapidly Developing Thunderstorm (RDT) product by Météo‐France are used to train a recurrent neural network model to predict areas of total convection and moderate convection. The learning task is formulated as a binary classification problem using a long short‐term memory (LSTM) network architecture. Results from the LSTM model are compared with an object‐based probabilistic approach to forecast convection using metrics such as a receiver operating characteristics (ROC) curve, the Brier score and reliability. Results indicate that the LSTM model performs similarly to the object‐based probabilistic benchmark when classifying moderate convection areas and shows improved skill when classifying areas of total convective. Finally, the LSTM model results are presented within an air traffic management context to showcase the potential use of machine learning models within an operational application.

Funder

Horizon 2020 Framework Programme

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3