Uncertainty in overturning of precariously balanced rocks due to basal contact

Author:

Saifullah M. Khalid1,Wittich Christine E.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Nebraska‐Lincoln Lincoln Nebraska USA

Abstract

AbstractPrecariously balanced rocks (PBRs) are a type of naturally occurring freestanding structure that provides valuable information to constrain seismic hazard at return periods which are important for critical facilities such as nuclear power plants and nuclear repositories. Exposure ages have been established to be in excess of 10,000–30,000 years, which is why precarious rocks are one of the only available means to validate seismic hazard associated with long return periods. One critical component for constraining seismic hazard in this way is the overturning estimate of a given precarious rock as a function of earthquake intensity. However, current state‐of‐the‐art methods for modeling the seismic response of precarious rocks involve significant sources of uncertainty. One of the main sources of uncertainty stems from the interface of the rock, which is usually occluded during surveying and assumed during modeling. Through extensive shake table testing, this study analyzes the uncertainty in the overturning response of a granite precarious rock specimen incorporating various degrees of interface contact. The results indicate that a small variation in the contact geometry could result in a substantial increase in the stability of the specimen, which is significant given the difficulty of surveying the interface of PBRs in the field. Repeatability tests indicate that the overturning demand can vary up to nearly ±50%. The probabilistic overturning responses are compared across the interface changes to bound uncertainty; and, the effect of modeling parameters, namely the contact normal stiffness, is evaluated through a parametric study and comparison with experimental results.

Funder

Southern California Earthquake Center

Pacific Gas and Electric Company

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3