The Oxidation of Oxygen and Sulfur‐Containing Heterocycles by Cytochrome P450 Enzymes

Author:

Podgorski Matthew N.1ORCID,Keto Angus B.2ORCID,Coleman Tom1ORCID,Bruning John B.3ORCID,De Voss James J.2,Krenske Elizabeth H.2ORCID,Bell Stephen G.1ORCID

Affiliation:

1. Department of Chemistry University of Adelaide Adelaide SA, 5005 Australia

2. School of Chemistry and Molecular Biosciences University of Queensland Brisbane Qld, 4072 Australia

3. School of Biological Sciences University of Adelaide Adelaide SA 5005 Australia

Abstract

AbstractThe cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen‐ and sulfur‐containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4‐(thiophen‐2‐yl)benzoic acid and 4‐(thiophen‐3‐yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels‐Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X‐ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4‐(thiophen‐3‐yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4‐(Furan‐2‐yl)benzoic acid was oxidized to 4‐(4′‐hydroxybutanoyl)benzoic acid using a whole‐cell system. This reaction proceeded via a γ‐keto‐α,β‐unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3