Achieving Non‐Interfacial Blocking Zinc Ion Transport Based on MOF Derived Manganese Oxides and Amorphous Carbon Hybrid Materials

Author:

Jiang Siyu1,Han Wenjuan2,Fang Luan1,Zhang Shu12,Xue Xiangxin13,Nie Ping1,Liu Bo13,Zhao Cuimei13,Lu Ming2,Chang Limin1

Affiliation:

1. Key Laboratory of Preparation and Applications of Environmental Friendly Materials of the Ministry of Education & College of Chemistry Jilin Normal University 130103 Changchun China

2. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, the Joint Laboratory of MXene Materials Jilin Normal University 130103 Changchun, Jilin China

3. The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials 130103 Changchun China

Abstract

AbstractHow to coordinate electron and ion transport behavior across scales and interfaces within ion battery electrodes? The exponential increase in surface area observed in nanoscale electrode materials results in an incomprehensibly vast spatial interval. Herein, to address the problems of volume expansion, dissolution of cathode material, and the charge accumulation problem existing in manganiferous materials for zinc ion batteries, metal organic framework is utilized to form the architecture of non‐interfacial blocking ~10 nm Mn2O3 nanoparticles and amorphous carbon hybrid electrode materials, demonstrating a high specific capacity of 361 mAh g−1 (0.1 A g−1), and excellent cycle stability of 105 mAh g−1 after 2000 cycles under 1 A g−1. The uniform and non‐separated disposition of Mn and C atoms constitutes an interconnected network with high electronic and ionic conductivity, minimizing issues like structural collapse and volume expansion of the electrode material during cycling. The cooperative insert mechanism of H+ and Zn2+ are analyzed via ex‐situ XRD and in‐situ Raman tests. The model battery is assembled to present practical possibilities. The results indicate that MOF‐derived carbonization provides an effective strategy for exploring Mn‐based electrode materials with high ion and electron transport capacity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3