Affiliation:
1. College of Materials Science and Engineering Jiangsu University Zhenjiang 212013 P. R. China
Abstract
AbstractLithium‐sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g−1 and maintains 786.5 mAh g−1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g−1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium‐sulfur batteries.
Funder
National Natural Science Foundation of China
Senior Talent Foundation of Jiangsu University
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献