A Photoswitchable Metallocycle Based on Azobenzene: Synthesis, Characterization, and Ultrafast Dynamics

Author:

Petrikat Raphael I.1ORCID,Hornbogen Justin2,Schmitt Marcel J. P.1ORCID,Resmann Emma2,Wiedemann Christina1,Dilmen Nesrin I.1,Schneider Heinrich1,Pick Annika M.1,Riehn Christoph13ORCID,Diller Rolf2ORCID,Becker Sabine1ORCID

Affiliation:

1. Fachbereich Chemie RPTU Kaiserslautern-Landau Erwin-Schrödinger-Straße 52–54 67663 Kaiserslautern Germany

2. Fachbereich Physik RPTU Kaiserslautern-Landau Erwin-Schrödinger-Straße 46 67663 Kaiserslautern Germany

3. Research Center OPTIMAS RPTU Kaiserslautern-Landau Erwin-Schrödinger-Straße 46 67663 Kaiserslautern Germany

Abstract

AbstractThe novel photoswitchable ligand 3,3’‐Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time‐resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)‐metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub‐picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump‐probe laser technique of gas phase transient photodissociation (τ‐PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs‐TA) in solution, emphasizing the azobenzene‐like dynamics of 2. This unique combination of fs‐TA and τ‐PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non‐cooperative isomerization process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3