Oxidation‐state sensitive light‐induced dynamics of Ruthenium‐4H‐Imidazole complexes

Author:

Zedler Linda1,Kupfer Stephan2,Schmidt Heiner12,Dietzek‐Ivanšić Benjamin123

Affiliation:

1. Functional Interfaces Leibniz Institute of Photonic Technology Albert-Einstein-Straße 9 07745 Jena Germany

2. Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany

3. Jena Center for Soft Matter Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany

Abstract

AbstractOxidized molecular states are key intermediates in photo‐induced redox reactions, e. g., intermolecular charge transfer between photosensitizer and catalyst in photoredox catalysis. The stability and longevity of the oxidized photosensitizer is an important factor in optimizing the respective light‐driven reaction pathways. In this work the oxidized states of ruthenium(II)‐4H‐imidazole dyes are studied. The ruthenium complexes constitute benchmark photosensitizers in solar energy interconversion processes with exceptional chemical stability, strong visible light absorption, and favourable redox properties. To rationalize the light‐induced reaction in the oxidized ruthenium(III) systems, we combine UV‐vis absorption, resonance Raman, and transient absorption spectroelectrochemistry (SEC) with time‐dependent density functional theory (TDDFT) calculations. Three complexes are compared, which vary with respect to their coordination environment, i. e., combining an 4H‐imidazole with either 2,2’‐bipyridine (bpy) or 2,2′;6′2“‐terpyridine (tpy) coligands, and chloride or isothiocyanate ligands. While all oxidized complexes have similar steady state absorption properties, their excited state kinetics differ significantly; the study thus opens the doorway to study the light‐driven reactivity of oxidized molecular intermediates in intermolecular charge transfer cascades.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3