Organic‐Inorganic Phenolic/POSS Hybrids Provide Highly Ordered Mesoporous Structures Templated by High Thermal Stability of PS‐b‐P4VP Diblock Copolymer

Author:

Chou Ting‐Chih1,Chen Wei‐Cheng1,Mohamed Mohamed Gamal12,Huang Yen‐Chi1,Kuo Shiao‐Wei13ORCID

Affiliation:

1. Department of Materials and Optoelectronic Science Center for Functional Polymers and Supramolecular Materials National Sun Yat-Sen University Kaohsiung 804 Taiwan

2. Chemistry Department, Faculty of Science Assiut University Assiut 71515 Egypt

3. Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan

Abstract

AbstractAnionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐b‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐b‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐b‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐b‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3