Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species

Author:

Awasthi Ayushi1ORCID,Mallojjala Sharath Chandra2ORCID,Kumar Rakesh1ORCID,Eerlapally Raju1ORCID,Hirschi Jennifer S.2ORCID,Draksharapu Apparao1ORCID

Affiliation:

1. Southern Laboratories-208 A Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India

2. Department of Chemistry Binghamton University Binghamton New York 13902 USA

Abstract

AbstractThe participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N‐donor ligands like 1‐methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates′ complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.

Funder

Science and Engineering Research Board

Council of Scientific and Industrial Research, India

National Institutes of Health

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3