One‐pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions

Author:

Lin Xiaogeng1ORCID,Ma Xingyu1,He Yasan2,Li Shijun1,Chen Wangzhi1,Li Lei1ORCID

Affiliation:

1. College of Materials Xiamen University Xiamen 361005 P. R. China

2. Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology College of Chemistry Chemical Engineering and Environment Minnan Normal University Zhangzhou 363000 PR China

Abstract

AbstractThe catalysis performance of metal nanoparticles (NPs) will be significantly deteriorated because of their spontaneous agglomeration during practical applications. Covalent‐organic frameworks (COFs) materials with functional groups and well‐defined channels benefit for the dispersion and anchor of metal ions and the confined growth of metal NPs, working as an ideal platform to compose catalytic systems. In this article, we report a one‐pot strategy for the preparation of metal NPs loaded COFs without the need of post‐modification. During the polymerization process, the pre‐added metal ions were stabilized by the rapidly formed COF oligomers and hardly disturb the construction of COFs. After reduction, metal NPs are uniformly anchored on the COF matrix. Eventually, a wide spectrum of metal NPs, including Au, Pd, Pt, AuPd, CuPd, CuPt and CuPdPt, loaded COFs are successfully prepared. The versatility and metal ions anchoring mechanism are verified with four different COF matrixes. Taking AuPd NPs as example, the resultant AuPd NPs loaded COF materials can selectively decompose ammonium formate and produce hydrogen in‐situ, exhibiting over 99 % conversion of hydrodechlorination for chlorobenzenes and nitro‐reduction reaction for nitroaromatic compounds under ambient temperature in aqueous solution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3