Solvent Acts as the Referee in a Match‐Up Between Charged and Preorganized Receptors

Author:

Bhattacharjee Nabarupa1ORCID,Gao Xinfeng1,Nathani Akash2,Dobscha James R.1,Pink Maren1,Ito Takashi2,Flood Amar H.1ORCID

Affiliation:

1. Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave. Bloomington IN, 47405 USA

2. Department of Chemistry Kansas State University 213 CBC Building, 1212 Mid-campus Dr North Manhattan KS 66506 USA

Abstract

AbstractThe prevalence of anion‐cation contacts in biomolecular recognition under aqueous conditions suggests that ionic interactions should dominate the binding of anions in solvents across both high and low polarities. Investigations of this idea using titrations in low polarity solvents are impaired by interferences from ion pairing that prevent a clear picture of binding. To address this limitation and test the impact of ion‐ion interactions across multiple solvents, we quantified chloride binding to a cationic receptor after accounting for ion pairing. In these studies, we created a chelate receptor using aryl‐triazole CH donors and a quinolinium unit that directs its cationic methyl inside the binding pocket. In low‐polarity dichloromethane, the 1 : 1 complex (log K1 : 1 ~ 7.3) is more stable than neutral chelates, but fortuitously comparable to a preorganized macrocycle (log K1 : 1 ~ 6.9). Polar acetonitrile and DMSO diminish stabilities of the charged receptor (log K1 : 1 ~ 3.7 and 1.9) but surprisingly 100‐fold more than the macrocycle. While both receptors lose stability by dielectric screening of electrostatic stability, the cationic receptor also pays additional costs of organization. Thus even though the charged receptor has stronger binding in apolar solvents, the uncharged receptor has more anion affinity in polar solvents.

Funder

Chemical Sciences, Geosciences, and Biosciences Division

Division of Chemistry

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3