Evaluation of tendon and ligament microstructure and mechanical properties in a canine model of mucopolysaccharidosis I

Author:

Lau Yian Khai1,Iyer Keerthana1,Shetye Snehal1ORCID,Friday Chet S.1,Dodge George R.12,Hast Michael W.1ORCID,Casal Margret L.3,Gawri Rahul1,Smith Lachlan J.14ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA

2. Mechano Therapeutics LLC Philadelphia Pennsylvania USA

3. Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine University of Pennsylvania Philadelphia Pennsylvania USA

4. Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA

Abstract

AbstractMucopolysaccharidosis (MPS) I is a lysosomal storage disorder characterized by deficient alpha‐l‐iduronidase activity, leading to abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a strong clinical need for improved treatment approaches that specifically target joint tissues; however, their development is hampered by poor understanding of underlying disease pathophysiology, including how pathological changes to component tissues contribute to overall joint dysfunction. Ligaments and tendons, in particular, have received very little attention, despite the critical roles of these tissues in joint stability and biomechanical function. The goal of this study was to leverage the naturally canine model to undertake functional and structural assessments of the anterior (cranial) cruciate ligament (CCL) and Achilles tendon in MPS I. Tissues were obtained postmortem from 12‐month‐old MPS I and control dogs and tested to failure in uniaxial tension. Both CCLs and Achilles tendons from MPS I animals exhibited significantly lower stiffness and failure properties compared to those from healthy controls. Histological examination revealed multiple pathological abnormalities, including collagen fiber disorganization, increased cellularity and vascularity, and elevated GAG content in both tissues. Clinically, animals exhibited mobility deficits, including abnormal gait, which was associated with hyperextensibility of the stifle and hock joints. These findings demonstrate that pathological changes to both ligaments and tendons contribute to abnormal joint function in MPS I, and suggest that effective clinical management of joint disease in patients should incorporate treatments targeting these tissues.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3