Discrete strong extremum principles for finite element solutions of advection‐diffusion problems with nonlinear corrections

Author:

Wang Shuai1ORCID,Yuan Guangwei1ORCID

Affiliation:

1. Institute of Applied Physics and Computational Mathematics Beijing China

Abstract

AbstractA nonlinear correction technique for finite element methods of advection‐diffusion problems on general triangular meshes is introduced. The classic linear finite element method is modified, and the resulting scheme satisfies discrete strong extremum principle unconditionally, which means that it is unnecessary to impose the well‐known restrictions on diffusion coefficients and geometry of mesh‐cell (e.g., “acute angle” condition), and we need not to perform upwind treatment on the advection term separately. Moreover, numerical example shows that when a discrete scheme does not satisfy the strong extremum principle, even if it maintains the global physical bound, non‐physical numerical oscillations may still occur within local regions where no numerical result is beyond the physical bound. Thus, it is worth to point out that our new nonlinear finite element scheme can avoid non‐physical oscillations around sharp layers in advection‐dominate regions, due to maintaining discrete strong extremum principle. Convergence rates are verified by numerical tests for both diffusion‐dominate and advection‐dominate problems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3