Affiliation:
1. Department of Physics, Faculty of Science and Data Analytics Institut Teknologi Sepuluh Nopember (ITS) Surabaya Indonesia
Abstract
AbstractZircon‐filled poly(methyl methacrylate) (PMMA) composites were synthesized, and their physical properties after ambient heat treatments were investigated. The sub‐micron zircon filler was obtained by purifying local zircon sand. The heat treatments were at 25°C (untreated), 55°C, and 70°C, around the glass transition temperature of PMMA. The crystal and molecular structures of the samples were investigated using X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The thermomechanical, optical, and thermal (between RT and 550°C) properties of all composites were examined using dynamic mechanical analysis (DMA), UV–Vis spectroscopy, and differential thermal/thermogravimetric analysis (DT/TGA) instruments. XRD patterns showed that there were no crystal structure changes. FTIR peaks were reduced due to the heat treatment indicating the presence of PMMA molecular degradation in the heat‐treated samples. Meanwhile, DMA data showed that the heat‐treated samples exhibit a much lower room temperature storage modulus, that is, up to half as compared to the untreated ones. Furthermore, the heat treatment also affects the optical properties, including a slight drop of transmittance in UV‐A and visible regions but a slight increase of transmittance in UV‐B and UV‐C regions. Finally, the differential scanning calorimetry/thermogravimetry (DSC/TG) data show that the heat‐treated pure PMMAs become more challenging to undergo thermal degradation (i.e., mass drop).
Funder
Direktorat Riset Dan Pengabdian Kepada Masyarakat
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献