Gliosarcoma Stem Cells Undergo Glial and Mesenchymal Differentiation In Vivo

Author:

deCarvalho Ana C.1,Nelson Kevin1,Lemke Nancy1,Lehman Norman L.2,Arbab Ali S.3,Kalkanis Steven1,Mikkelsen Tom14

Affiliation:

1. Departments of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA

2. Pathology, Henry Ford Hospital, Detroit, Michigan, USA

3. Radiology, Henry Ford Hospital, Detroit, Michigan, USA

4. Neurology, Henry Ford Hospital, Detroit, Michigan, USA

Abstract

Abstract Cancer stem cells (CSCs) are characterized by their self-renewing potential and by their ability to differentiate and phenocopy the original tumor in orthotopic xenografts. Long-term propagation of glioblastoma (GBM) cells in serum-containing medium results in loss of the CSCs and outgrowth of cells genetically and biologically divergent from the parental tumors. In contrast, the use of a neurosphere assay, a serum-free culture for selection, and propagation of central nervous system-derived stem cells allows the selection of a subpopulation containing CSCs. Gliosarcoma (GS), a morphological variant comprising approximately 2% of GBMs, present a biphasic growth pattern, composed of glial and metaplastic mesenchymal components. To assess whether the neurosphere assay would allow the amplification of a subpopulation of cells with “gliosarcoma stem cell” properties, capable of propagating both components of this malignancy, we have generated neurospheres and serum cultures from primary GS and GBM surgical specimens. Neurosphere cultures from GBM and GS samples expressed neural stem cell markers Sox2, Musashi1, and Nestin. In contrast to the GBM neurosphere lines, the GS neurospheres were negative for the stem cell marker CD133. All neurosphere lines generated high-grade invasive orthotopic tumor xenografts, with histological features strikingly similar to the parental tumors, demonstrating that these cultures indeed are enriched in CSCs. Remarkably, low-passage GS serum cultures retained the expression of stem cell markers, the ability to form neurospheres, and tumorigenicity. The GS experimental tumors phenocopied the parental tumor, exhibiting biphasic glial and mesenchymal components, constituting a clinically relevant model to investigate mesenchymal differentiation in GBMs.

Funder

Hermelin Brain Tumor Center

Henry Ford Hospital

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3