Optimization of Ketobenzothiazole‐Based Type II Transmembrane Serine Protease Inhibitors to Block H1N1 Influenza Virus Replication

Author:

Colombo Éloïc1,Désilets Antoine1ORCID,Hassanzadeh Malihe1,Lemieux Gabriel1ORCID,Marois Isabelle23,Cliche Dominic2,Delbrouck Julien A.14ORCID,Murza Alexandre1ORCID,Jean François5,Marsault Eric1ORCID,Richter Martin V.2,Leduc Richard1ORCID,Boudreault Pierre‐Luc1ORCID

Affiliation:

1. Department of Pharmacology-Physiology Faculty of Medicine and Health Sciences and Institut de Pharmacologie de Sherbrooke Université de Sherbrooke Sherbrooke J1H 5N4 Québec Canada

2. Department of Medicine Faculty of Medicine and Health Sciences Université de Sherbrooke Sherbrooke J1H 5N4 Québec Canada

3. Current address: Department of Biology Faculty of Sciences Université de Sherbrooke Sherbrooke J1K 2R1 Québec Canada

4. Current address: Xenon Pharmaceuticals Inc. Burnaby V5G 4W8 British Columbia Canada

5. Department of Microbiology and Immunology Faculty of Science Life Sciences Institute University of British Columbia V6T 1Z3 British Columbia Canada

Abstract

AbstractHuman influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug‐resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR‐Kbt (IN‐1, aka N‐0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N‐terminal groups, leading to significant improvements (from μM to nM, 60 times more potent than IN‐1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu‐3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.

Funder

Canadian Institutes of Health Research

Publisher

Wiley

Subject

Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Molecular Medicine,Drug Discovery,Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3