OpenSAFELY: A platform for analysing electronic health records designed for reproducible research

Author:

Nab Linda1ORCID,Schaffer Andrea L.1ORCID,Hulme William1,DeVito Nicholas J.1,Dillingham Iain1,Wiedemann Milan1,Andrews Colm D.1,Curtis Helen1,Fisher Louis1,Green Amelia1,Massey Jon1,Walters Caroline E.1,Higgins Rose1,Cunningham Christine1,Morley Jessica1,Mehrkar Amir1,Hart Liam1,Davy Simon1,Evans David1,Hickman George1,Inglesby Peter1,Morton Caroline E.1,Smith Rebecca M.1,Ward Tom1,O'Dwyer Thomas1,Maude Steven1,Bridges Lucy1,Butler‐Cole Ben F. C.1,Stables Catherine L.1,Stokes Pete1,Bates Chris2,Cockburn Jonny2,Hester Frank2,Parry John2,Bhaskaran Krishnan3,Schultze Anna3,Rentsch Christopher T.3ORCID,Mathur Rohini3,Tomlinson Laurie A.3,Williamson Elizabeth J.3,Smeeth Liam3,Walker Alex1,Bacon Sebastian1,MacKenna Brian1,Goldacre Ben1

Affiliation:

1. Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences University of Oxford Oxford UK

2. TPP TPP House Leeds UK

3. London School of Hygiene and Tropical Medicine London UK

Abstract

AbstractElectronic health records (EHRs) and other administrative health data are increasingly used in research to generate evidence on the effectiveness, safety, and utilisation of medical products and services, and to inform public health guidance and policy. Reproducibility is a fundamental step for research credibility and promotes trust in evidence generated from EHRs. At present, ensuring research using EHRs is reproducible can be challenging for researchers. Research software platforms can provide technical solutions to enhance the reproducibility of research conducted using EHRs. In response to the COVID‐19 pandemic, we developed the secure, transparent, analytic open‐source software platform OpenSAFELY designed with reproducible research in mind. OpenSAFELY mitigates common barriers to reproducible research by: standardising key workflows around data preparation; removing barriers to code‐sharing in secure analysis environments; enforcing public sharing of programming code and codelists; ensuring the same computational environment is used everywhere; integrating new and existing tools that encourage and enable the use of reproducible working practices; and providing an audit trail for all code that is run against the real data to increase transparency. This paper describes OpenSAFELY's reproducibility‐by‐design approach in detail.

Funder

Wellcome Trust

Medical Research Council

UK Research and Innovation

National Institute for Health and Care Research

Health Data Research UK

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3