Mixing of magmas from multiple sources in the petrogenesis of multi‐stage Early Cretaceous syenites in the Wulingshan alkaline complex, northern North China Craton: Evidence from enclaves

Author:

Liu Ruibin123ORCID,Tong Ying1ORCID,Zhang Huafeng4,Duan Sining1,Guo Lei5

Affiliation:

1. Beijing SHRIMP Center, Institute of Geology Chinese Academy of Geological Sciences Beijing China

2. School of Earth and Space Sciences Peking University Beijing China

3. Department of Earth Sciences and Engineering Shanxi Institute of Technology Yangquan China

4. China University of Geosciences Beijing China

5. Institute of Geology Chinese Academy of Geological Sciences Beijing China

Abstract

There are several different models for the origin of syenites, but the role of magma mixing in the formation of syenites remains unclear. The Wulingshan alkaline complex in the northern North China Craton consists mainly of porphyritic syenite and syenite with abundant enclaves. These enclaves may provide new insights into the petrogenesis of syenites. We obtained zircon U–Pb age, mineral chemistry, whole‐rock major and trace elements, and Sr–Nd isotopic data for the enclaves and their host rocks to constrain the petrogenesis and identify the role of magma mixing during the formation of the different syenites in the Wulingshan alkaline complex. The results of zircon U–Pb dating indicate that the enclaves and host rocks crystallized contemporaneously at ca. 133 Ma. The enclaves contain abundant clinopyroxene, amphibole, and biotite, and their average Nb/Ta (18.46) and Th/Ce (0.04) ratios are similar to those of the mantle. The enclaves have relatively high Fe2O3T, MgO, and CaO contents, and their SiO2contents are equivalent to those of intermediate rocks, indicating that they formed by mixing the mafic and felsic magmas to some extent. The different mineral assemblages, major and trace elements and isotopic compositions of the enclaves in the porphyritic syenite and syenite indicate that they are two batches of parental magma with different properties derived from the mantle. The porphyritic syenite and syenite have high SiO2and low Fe2O3T, MgO, and CaO contents, as well as low V, Cr, Co, and Ni contents. These major and trace element characteristics of the host rocks require the involvement of crustal components. The Sr–Nd isotopic compositions of the enclaves and the host syenitoids plot on a mixing curve between enriched lithospheric mantle and lower crust, indicating that these rocks are the products of magma mixing and crust–mantle interaction. Considering the contact relationships, the geochemistry data, and the mixing model presented in the paper, we propose that the upwelling of the hot asthenosphere heated the overlying enriched lithospheric mantle and triggered low‐degree partial melting. The alkalic mafic magmas derived from enriched mantle sources were mixed with felsic magmas generated by partial melting of the lower (or upper) crust to form the different syenites.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3