Affiliation:
1. Key Lab of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST) School of Chemistry & Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China
Abstract
AbstractLight is a promising renewable energy source and can be converted into heat, electricity, and chemical energy. However, the efficiency of light‐energy conversion is largely hindered by limited light‐absorption coefficients and the low quantum yield of current‐generation materials. Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index can be used to manipulate the dispersion of photons to generate the photonic bandgap (PBG), in which light is reflected. The slow photon effect, i. e., photon propagation at a reduced group velocity near the edges of the PBG, is widely regarded as another valuable optical property for manipulating light. Furthermore, multiple light scattering can increase the optical path, which is a vital optical property for PCs. Recently, the light reflected by PBG, the slow photon effect, and multiple light scattering have been exploited to improve light utilization efficiency in photoelectrochemistry, materials chemistry, and biomedicine to enhance light‐energy conversion efficiency. In this review, the fabrication of opal or inverse opal PCs and the theory for improving the light utilization efficiency of photocatalysis, solar cells, and photoluminescence regulation are discussed. We envision photon management of opal or inverse opal PCs may provide a promising avenue for light‐assisted applications to improve light‐energy‐conversion efficiency.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献