Alanine Formation in a Zero‐Gap Flow Cell and the Role of TiO2/Ti Electrocatalysts

Author:

Englezos Christos1,Raman Akash1,Jonker Dirk1,Ramos‐Delgado Norma Alicia12,Altomare Marco3,Gardeniers Han1,Susarrey Arturo1

Affiliation:

1. Mesoscale Chemical Systems Group MESA+ Institute for Nanotechnology, Faculty of Science and Technology University of Twente P.O. Box 217 7500 AE Enschede The Netherlands

2. National Council of Science and Technology/National Technological Institute of Mexico – Campus Nuevo León Center for Research and Technological Innovation, Apodaca Nuevo León Mexico

3. Photo-Catalytic Synthesis (PCS) Group MESA+ Institute for Nanotechnology Faculty of Science and Technology University of Twente P.O. Box 217 7500 AE Enschede The Netherlands

Abstract

AbstractThe electrochemical synthesis of ‐amino acids at room temperature and pressure is a sustainable alternative to conventional methods like microbial fermentation and Strecker synthesis. A custom‐built zero‐gap flow electrolyzer was used to study the electrosynthesis of alanine via the electrocatalytic reductive amination (ERA) of the corresponding biomass‐derivable ‐keto acid precursor – pyruvic acid (PA), and hydroxylamine (NH2OH) at very low pH. Non‐toxic, abundant, and easy to prepare TiO2/Ti electrocatalysts were utilized as the cathode. Three TiO2/Ti felt electrodes with different oxide thicknesses were prepared and their characterization results were correlated with their respective electrochemical performance in terms of Faradaic efficiency , and partial current density . Cyclic voltammetry indicated a different electrocatalytic reduction process on hydrothermally treated electrodes, compared to thermally oxidized ones. Hydrothermally treated electrodes were also found to have the thickest porous anatase layer and achieved 50–75 % alanine conversion efficiencies. Optimization showed that the cell potential, reactant flow rate and the PA: NH2OH ratio were crucial parameters in determining the conversion efficiency. and were found to significantly decrease when an excess of is used and, an optimal alanine of 75 % was achieved at 2.0 V applied cell potential and 10 mL/h reactant flow rate.

Funder

European Commission

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3