Molecular pathogenesis of a novel Met394Thr variant causing hemophilia B

Author:

Lu Linna1ORCID,Wang Lingyu1,Shen Wukang1,Fang Shuai1,Zhao Lidong1,Hu Xuchen1,Yang Linhua1,Wang Gang1

Affiliation:

1. Institute of Hematology The Second Hospital of Shanxi Medical University Taiyuan People's Republic of China

Abstract

AbstractBackgroundHemophilia B (HB), a rare bleeding disorder, shows X‐linked recessive inheritance and is caused by heterogeneous variants in the FIX gene (F9) encoding coagulation factor IX (FIX). This study aimed to investigate the molecular pathogenesis of a novel Met394Thr variant causing HB.MethodsWe used Sanger sequencing to analyze F9 sequence variants in members of a Chinese family with moderate HB. Subsequently, we performed in vitro experiments on the identified novel FIX‐Met394Thr variant. In addition, we performed bioinformatics analysis of the novel variant.ResultsWe identified a novel missense variant (c.1181T>C, p.Met394Thr) in a Chinese family with moderate HB in the proband. The proband's mother and grandmother were carriers for the variant. The identified FIX‐Met394Thr variant did not affect the transcription of F9 and the synthesis and secretion of FIX protein. The variant may, therefore, affect the physiological function of FIX protein by disrupting its spatial conformation. In addition, another variant (c.88+75A>G) in intron 1 of F9 was identified in the grandmother, which may also affect FIX protein function.ConclusionWe identified FIX‐Met394Thr as a novel causative variant of HB. Further understanding of the molecular pathogenesis underlying FIX deficiency may guide novel strategies for precision HB therapy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference46 articles.

1. Molecular genotyping of the Italian cohort of patients with hemophilia B;Belvini D.;Haematologica,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3