First‐Principles Insights into the Mechanism of CO2 Hydrogenation Reactions by Fe‐PNP Pincer Complex

Author:

Ghoshal Sourav1ORCID,Sarkar Pranab1ORCID

Affiliation:

1. Department of Chemistry Visva-Bharati University Santiniketan 731235

Abstract

AbstractUsing the state of the art theoretical methods, we have provided a comprehensive mechanistic understanding of the CO2 hydrogenation into HCOOH, H2CO, and CH3OH by 2,6‐bis(diisopropylphosphinomethyl)pyridine (PNP)‐ligated Fe pincer complex, featuring one CO and two H as co‐ligands. For the computational investigation, a verified structural model containing methyl groups in place of the experimental isopropyl groups was used. Three catalytic conversions involving hydrogenation of CO2 into formic acid (HCOOH), HCOOH into formaldehyde and methanol were studied in different solvent medium. Our modelled complex appears to be a viable base‐free catalyst for the conversion of CO2 into HCOOH and HCOOH into H2CO, based on the free energy profiles, which show apparent activation energy barriers of 16.28 kcal/mol and 23.63 kcal/mol for the CO2 to HCOOH and HCOOH to H2CO conversion, respectively. However, the computed results show that, due to the huge energy span of H2CO to CH3OH conversion, complete hydrogenation of CO2 into methanol could not occur under moderate conditions. Morpholine co‐catalyst, which can lower the hydrogenation barrier by taking part in a simultaneous H‐atom donation‐acceptance process, could have assisted in completing this step.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3