Background‐Free Detection of Spin‐Exchange Dynamics at Ultra‐Low Magnetic Field

Author:

Kelley Michele1ORCID,Bryden Nicholas1ORCID,Atalla Sebastian William1ORCID,Branca Rosa Tamara1ORCID

Affiliation:

1. University of North Carolina at Chapel Hill Chapel Hill, NC U.S.

Abstract

AbstractUltra‐low field nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) inherently suffer from a low signal‐to‐noise ratio due to the small thermal polarization of nuclear spins. Transfer of polarization from a pre‐polarized spin system to a thermally polarized spin system via the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) could potentially be used to overcome this limitation. SPINOE is particularly advantageous at ultra‐low magnetic field, where the transferred polarization can be several orders of magnitude higher than thermal polarization. Here we demonstrate direct detection of polarization transfer from highly polarized 129Xe gas spins to 1H spins in solution via SPINOE. At ultra‐low field, where thermal nuclear spin polarization is close to background noise levels and where different nuclei can be simultaneously detected in a single spectrum, the dynamics of the polarization transfer can be observed in real time. We show that by simply bubbling hyperpolarized 129Xe into solution, we can enhance 1H polarization levels by a factor of up to 151‐fold. While our protocol leads to lower enhancements than those previously reported under extreme Xe gas pressures, the methodology is easily repeatable and allows for on‐demand enhanced spectroscopy. SPINOE at ultra‐low magnetic field could also be employed to study 129Xe interactions in solutions.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3