Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution**

Author:

Platzer Gerald12ORCID,Ptaszek Aleksandra L.13ORCID,Böttcher Jark4ORCID,Fuchs Julian E.4ORCID,Geist Leonhard4ORCID,Braun Daniel1ORCID,McConnell Darryl B.4ORCID,Konrat Robert1ORCID,Sánchez‐Murcia Pedro A.3ORCID,Mayer Moriz4ORCID

Affiliation:

1. Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology Department of Structural and Computational Biology Max Perutz Labs University of Vienna Campus Vienna Biocenter 5 1030- Vienna Austria

2. MAG-LAB GmbH Karl-Farkas-Gasse 22 1030- Vienna Austria

3. Laboratory for Computer-Aided Molecular Design Division of Medicinal Chemistry Otto Loewi Research Center Medical University Graz Neue Stiftingtalstrasse 6/III 8010- Graz Austria

4. Boehringer Ingelheim RCV GmbH & Co. KG Dr. Boehringer Gasse 5–11 1121- Vienna Austria

Abstract

AbstractThe availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein‐ligand complex structural information, X‐ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution‐state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. By comparing the experimental ligand 1H chemical shift values with those computed from the X‐ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X‐ray co‐crystal structures resulting in a better agreement with experimental 1H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3