Comprehensive Mechanism for CO Electroreduction on Dual‐Atom‐Catalyst‐Anchored N‐Doped Graphene

Author:

Liu Di1,Zhao Jia2,Kong Youchao1,Ai Haoqiang3,Bai Haoyun1,Leong Chon Chio4,Lo Kin Ho3,Wang Shuangpeng15,Ip Weng Fai5,Lin Sen2,Pan Hui15ORCID

Affiliation:

1. Institute of Applied Physics and Materials Engineering University of Macau Macao SAR China

2. State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350002 China

3. Department of Electromechanical Engineering, Faculty of Science and Technology University of Macau Macao SAR China

4. Department of Electrical and Computer Engineering, Faculty of Science and Technology University of Macau Macao SAR China

5. Department of Physics and Chemistry, Faculty of Science and Technology University of Macau Macao SAR China

Abstract

AbstractCarbon neutrality has drawn increasing attention for realizing the carbon cyclization and reducing the greenhouse effect. Although the C1 products, such as CO, can be achieved with a high Faraday efficiency, the targeted production of C2 fuels as well as the mechanism have not been systematically investigated. In this work, we carry out a first‐principles study to screen dual‐atom catalysts (DACs) for producing C2 fuels through the electrocatalytic carbon monoxide reduction reaction (e‐CORR). We find that methanol, ethanol and ethylene can be produced on both DAC−Co and DAC−Cu, while acetate can be achieved on DAC−Cu only. Importantly, methanol and ethylene are preferred on DAC−Co, while acetate and ethylene on DAC−Cu. Furthermore, we show that the explicit solvent can enhance the adsorption and influence the protonation steps, which subsequently affects the protonation and dimerization behavior as well as the performance and selectivity of e‐CORR on DACs. We further demonstrate that the C−C coupling is easy to be formed and stabilized if the Integrated Crystal Orbital Hamilton Population (ICOHP) is low because of the low energy barrier. Our findings provide not only guidance on the design of novel catalysts for e‐CORR, but an insightful understanding on the reduction mechanism.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3