An assessment of the geomorphodiversity and land use/cover change (LUCC) effects associated with landslides in Meghalaya, India

Author:

Agrawal Navdeep1ORCID,Dixit Jagabandhu1ORCID

Affiliation:

1. Disaster Management Laboratory Shiv Nadar University Delhi NCR Uttar Pradesh India

Abstract

AbstractThe Shillong Plateau in the Eastern Himalayas is exposed to high seismicity, neo‐tectonic activity and orographic precipitation that aggravated landslides in the region by affecting hillslope processes. Landscape development is influenced by landslide phenomenon and depends upon geomorphic processes and geomorphodiversity (GmD). It is linked intimately with geomorphology, hydrology and soil type. This study uses a remote sensing and GIS‐based approach to assess the spatial linkage between GmD and landslide distribution in Meghalaya (India). GmD index (GmDI) is developed using geological, morphometric and geomorphological parameters and analysed with landslide distribution. The landslide distribution considering land use/cover change (LUCC) is also examined. The result shows that the region with high‐relief, valley and depression zone, mainly along the Dauki fault, have a high to a very high GmDI. About 61% of landslide localities are in zones of high GmDI, concentrated in the central and eastern parts of Meghalaya. Density analysis of the very high class (class 5) of GmD confirms the same. Most of these landslides occur in dense and light‐vegetated landmasses. However, the LUCC analysis reveals a significant increase in the built area on steeper slopes (average expansion ratio of 2.30 for slopes >15°) between 2017 and 2022, indicating a rising threat of landslides in urban areas of Meghalaya. The study presents the importance of GmD in active tectonic regions with particular reference to landslide potential and recent LUCC. It can aid decision‐makers in planning sustainable developments and risk mitigation strategies for landslide hazards and geoconservation.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3