Semiparametric multivariate joint model for skewed‐longitudinal and survival data: A Bayesian approach

Author:

Chen Jiaqing1,Huang Yangxin2ORCID,Wang Qing3

Affiliation:

1. Department of Statistics, College of Science Wuhan University of Technology Wuhan China

2. College of Public Health University of South Florida Tampa Florida USA

3. Yunnan Key Laboratory of Statistics Modeling and Data Analysis Yunnan University Kunming China

Abstract

Joint models and statistical inference for longitudinal and survival data have been an active area of statistical research and have mostly coupled a longitudinal biomarker‐based mixed‐effects model with normal distribution and an event time‐based survival model. In practice, however, the following issues may standout: (i) Normality of model error in longitudinal models is a routine assumption, but it may be unrealistically violating data features of subject variations. (ii) Data collected are often featured by the mixed types of multiple longitudinal outcomes which are significantly correlated, ignoring their correlation may lead to biased estimation. Additionally, a parametric model specification may be inflexible to capture the complicated patterns of longitudinal data. (iii) Missing observations in the longitudinal data are often encountered; the missing measures are likely to be informative (nonignorable) and ignoring this phenomenon may result in inaccurate inference. Multilevel item response theory (MLIRT) models have been increasingly used to analyze the multiple longitudinal data of mixed types (ie, continuous and categorical) in clinical studies. In this article, we develop an MLIRT‐based semiparametric joint model with skew‐t distribution that consists of an extended MLIRT model for the mixed types of multiple longitudinal data and a Cox proportional hazards model, linked through random‐effects. A Bayesian approach is employed for joint modeling. Simulation studies are conducted to assess performance of the proposed models and method. A real example from primary biliary cirrhosis clinical study is analyzed to estimate parameters in the joint model and also evaluate sensitivity of parameter estimates for various plausible nonignorable missing data mechanisms.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3