Determining precipitable water vapour from upper‐air temperature, pressure and geopotential height

Author:

Ferreira António P.1ORCID,Gimeno Luis1ORCID

Affiliation:

1. Environmental Physics Laboratory (EPhysLab) Centro de Investigación Mariña, Universidade de Vigo Ourense Spain

Abstract

AbstractRadiosonde measurements of relative humidity (RH) are the main source of uncertainty in precipitable water vapour (PWV) calculation from pressure, temperature, and RH/dewpoint (PTU) data. This paper presents a formula expressing PWV in terms of pressure and temperature as functions of geopotential height (GPH), thereby allowing the PWV to be determined: (1) without any moisture‐related calculations other than those involved in measuring GPH (in radiosondes with a pressor sensor) or pressure (otherwise); (2) without relying on humidity measurements by using Global Positioning System (GPS)‐based GPH according to the gravity field, provided that pressure is directly measured. The numerical instability associated with random data errors or deviations from hydrostatic equilibrium makes the second approach unfeasible on short time scales, revealing discrepancies between the PTU‐ and GPS‐based GPHs; however, the estimation of long‐term average PWV above a location is not hindered. The estimation of PWV without humidity data was tested using high‐resolution data from 62 upper‐air stations operated by the NOAA National Weather Service. The seasonal mean {DJF, MAM, JJA, SON} PWV from the surface to 300 hPa calculated from PT and GPS data over the period 2016–2018, after rejecting individual estimates inconsistent with the 0%–100% RH range, showed a mean bias error of {−0.1, +0.1, −1.4, −0.9} kg·m−2 relative to the PTU‐based values across the stations, and a RMSE ranging from 2.4 (DJF) to 3.2 (JJA) kg·m−2. By restricting the analysis to observations with above‐average matching between the PTU‐ and GPS‐based GPH, the bias magnitude and RMSE reduced respectively to less than 0.5 and 1 kg·m−2 in all seasons. The results indicate that evaluating the long‐term agreement between the two PWV calculation methods at different sites could be useful in detecting systematic observation errors in GPS radiosonde systems using a pressure sensor.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3