Affiliation:
1. Beijing Key Laboratory for Forest Pest Control Beijing Forestry University Beijing China
2. Mentougou Forestry Station Beijing China
3. Department of Integrative Biology University of Guelph Guelph Ontario Canada
Abstract
AbstractBackgroundIn recent years, the quarantine forestry pests the Asian longhorned beetle (ALB) Anoplophora glabripennis and the citrus longhorned beetle (CLB) Anoplophora chinensis have spread across the Northern Hemisphere, triggering concern about their potential distribution. However, little is known about the niche shifts of the pests during the invasion, making it difficult to assess their potential ranges. We thus employed two distinct approaches (i.e., ordination‐based and reciprocal model‐based) to compare the native and invaded niches of ALB and CLB after their spread to new continents based on global occurrence records. We further constructed models with pooled occurrences from both the native and invaded ranges to analyze the effects of occurrence partitioning on predicted ranges.ResultsWe detected expansions in the invaded niches of both pests, indicating that the niches shifted to varying extents after the invasion. Large shares of the native niches of ALB and CLB remained unfilled, revealing the potential for further invasion in new regions. The models calibrated with pooled occurrences clearly underestimated the potential ranges in invaded regions compared with the projections based on partitioned models considering native and invaded areas separately.ConclusionsThese results emphasize the importance of elucidating the niche dynamics of invasive species for obtaining accurately predicted ranges, which may help identify risk areas masked by the assumption of niche conservatism. Furthermore, prevention and quarantine measures for ALB and CLB are clearly needed to avoid future serious damage to forest ecosystems. © 2023 Society of Chemical Industry.
Funder
National Natural Science Foundation of China
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献