Perspectives of the Fritz‐Scheffer Awardee 2021: Profile‐ to ecosystem‐scale perspectives on soil organic matter formation as demonstrated by woody debris in forest dynamics

Author:

Stutz Kenton P.1ORCID

Affiliation:

1. Institute of Forest Sciences, Chair of Soil Ecology University of Freiburg Freiburg Germany

Abstract

AbstractSoil organic matter (SOM) forms along a continuum from individual particles, pores, and aggregates to litter–soil profiles and larger ecosystems such as forests. However, forest management of SOM stocks and the carbon therein requires knowledge on which processes and factors at which scales determine SOM formation from forest biomass. As evident from woody debris at the profile scale, SOM forms through additions, transformations, translocations, and removals of litter by soil organisms and environmental components. Yet SOM stocks only increase if litter additions‐to‐removals are out of steady state or enter a new steady state that ignores older litter. Both happen through disturbance and self‐selecting feedback processes in ecosystems consisting of autotrophs, heterotrophs, and their physical environment. One such positive feedback process is litter‐SOM transformation by heterotrophs that releases nutrients that promote plant productivity and thus litter input. Stocks of litter‐SOM, heterotrophs, nutrients, and plants thus exhibit Lotka–Volterra dynamics (i.e., predator–prey interactions) and only increase when attractor states (i.e., steady series or sets of states) change due to disturbance. Evidence of evolving feedback processes and disturbance in SOM would help identify limits, potentials, and precariousness of ecosystems in light of global change, but remains to be found.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3