Improving the proton conductivity of HKUST‐1 by hole expansion and ionic liquid introduction

Author:

Liu Yu‐Hang1,Liu Yeping1,Zheng Xiaofeng1ORCID,Wang Qinghui1,Tang Huan1ORCID,Liu Jie1ORCID,Ma Yingying1,Jing Zhihong1,Liu Zhe1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Qufu Normal University Qufu China

Abstract

As a new type of proton conductor, metal–organic frameworks (MOFs) have attracted much attention because of their superior properties over conventional materials, such as the modifiability of framework, reversibility of coordination bond, high specific surface area, and porosity. It is predicted that the proton conductivities of MOFs can be improved by hole expansion and ionic liquid introduction. In this work, HKUST‐1 and LP‐HKUST‐1 were prepared, which were filled with different proportions of N‐methylimidazole triflate (MIM‐CF3SO3) to prepare composite materials MIM‐CF3SO3@HKUST‐1‐100% and MIM‐CF3SO3@LP‐HKUST‐1‐x (x = 25%, 50%, 75% and 100%). A total of seven kinds of materials were synthesized. The proton conductivities of all the materials at 75% RH were tested from 303 to 353 K. In this environment, MIM‐CF3SO3@LP‐HKUST‐1‐100% shows excellent proton conductivity (σ = 0.341 S·cm−1 at 353 K, 75% relatively humidity [RH]), being 7060 times that of HKUST‐1, and reaches the peak value of MOF family in recent years. Then, the conductivities of parts of the materials were tested in extreme environments, such as in high‐humidity environment (303–353 K, 100% RH), high‐temperature environment (373–423 K, N2 atmosphere), and low‐temperature environment (253–283 K, 75% RH). The results show that under all conditions above, the proton conductivity of MIM‐CF3SO3@LP‐HKUST‐1‐100% is the best, up to 0.341 S·cm−1 at 353 K and 75% RH, 0.179 S·cm−1 at 353 K and 100% RH, 1.31 × 10−3 S·cm−1 at 283 K and 75% RH, and 2.31 × 10−4 S·cm−1 at 423 K and N2 atmosphere, indicating that proton conductivity of HKUST‐1 is improved by hole expansion and ionic liquid introduction. Finally, the stability test showed that MIM‐CF3SO3@LP‐HKUST‐1‐100% was stable in all environments above. Moreover, the conductive mechanism of HKUST‐1 before and after introduction of ionic liquids was also discussed, providing a theoretical basis for the enhancement of proton conductivities of MOFs using ionic liquid introduction and hole expansion.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3