Comparison of antimicrobial properties of inorganic peroxide polymer composites

Author:

Job Dario1,Matta Justin2,Dang Cat‐Thy1,Raphael Yara1,Vorstenbosch Joshua2,Helli Bentolhoda1,Merle Geraldine12ORCID,Barralet Jake23

Affiliation:

1. Chemical Engineering Department Polytechnique Montreal Québec Canada

2. Department of Surgery, Division of Surgical and Interventional Sciences McGill University Montreal Québec Canada

3. Faculty of Dentistry McGill University Montreal Québec Canada

Abstract

AbstractWound healing and prevention of bacterial infections are critical aspects of modern medical care. In this work, antibacterial films were produced by creating composites of polycaprolactone with inorganic peroxides. Calcium, magnesium, and zinc peroxide were incorporated in a biocompatible polymeric film. Iron oxide, sodium bicarbonate, and calcium phosphate were added to reduce hydrogen peroxide and to maintain pH in a less alkaline range, allowing for optimization of the material's antibacterial efficacy while minimizing cytotoxicity toward human fibroblasts. Experiments with common wound pathogens, Staphylococcus aureus and Pseudomonas aerugonisa, confirmed significant and prolonged antibacterial effects of peroxide‐doped films. Findings showed that the addition of CaO2 and MgO2 within the film increased cytotoxicity toward human fibroblasts after 48 h (30%–40% decrease compared to control), whereas ZnO2‐based films exhibited a minimal cytotoxicity consistently maintaining over 70% cell viability throughout the course of the experiment. We examined the materials’ sustained release of reactive oxygen species and oxygen, and pH variation correlated with antibacterial activity. Given the unique combination of antibacterial efficacy and mammalian biocompatibility, these peroxides have value as components to sustain hydrogen peroxide release when appropriately compounded to reduce pH variation and avoid excessive hydrogen peroxide levels.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3