Co‐, Ni‐, and Cu‐Doped Fe‐Based Catalysts for the Microwave‐Assisted Catalytic Pyrolysis of Polyethylene

Author:

Zhang Bin1ORCID,Li Ya'nan1,Lu Shuai1,Hu Yanbing1,Li Yang1,Wang Song1,Liu Jie2,Tang Tao2,Li Sanxi1ORCID

Affiliation:

1. Department of Environmental and Chemical Engineering Shenyang University of Technology Shenyang Liaoning 110870 China

2. Department of State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China

Abstract

AbstractEnvironmental issues caused by waste polyethylene are becoming increasingly severe. Among potential treatment processes, microwave‐assisted catalytic pyrolysis is promising for converting waste plastics into valuable products owing to its energy efficiency and environmental sustainability. Herein, a modified citric acid combustion method was used to prepare a series of metal oxide catalysts with loose porous structures. The prepared Fe‐based catalysts doped with Co, Ni, or Cu were employed in the microwave‐assisted catalytic pyrolysis of polyethylene. The bimetallic Co1Fe1Ox catalyst exhibited the best performance, yielding hydrogen at a rate of 60.7 mmol/gplastic. Further variation in the Co : Fe ratio revealed that the Co1Fe9Ox catalyst achieved the highest hydrogen production efficiency (63.64 mmol/gplastic). Similar oil‐phase products were obtained over the various catalysts, as revealed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Furthermore, scanning electron microscopy (SEM) identified carbon nanotubes as the major solid product of pyrolysis, which were attached to the catalyst surface. Finally, a combination of thermogravimetric analysis, SEM, and energy‐dispersive X‐ray spectroscopy indicated that the reduction in catalytic activity following recycling was caused by the accumulation of carbonaceous products on the catalyst surface. Overall, Co1Fe9Ox catalysts were favorable for obtaining H2 and carbon nanotubes by the microwave‐assisted pyrolysis of polyethylene.

Funder

National Natural Science Foundation of China

Shenyang University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3