Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading

Author:

Sarkar Prasenjit1,Dash Sandeep2,Krause Jeanette A.1,Sinha Soumalya1,Panetier Julien A.2,Jiang Jianbing “Jimmy”1ORCID

Affiliation:

1. Department of Chemistry University of Cincinnati Cincinnati OH 45221

2. Department of Chemistry State University of New York Binghamton NY 13902

Abstract

AbstractElectrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low‐energy cost is desired in producing carbon‐rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy‐demanding carbon‐chloride (C−Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)‐pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox‐active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2‐CO2 adduct and that the C−Cl bond activation step is the rate‐determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C−Cl activation process with the subsequent carboxylation step.

Funder

National Science Foundation

National Institutes of Health

Binghamton University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3