Mechanochemical Ammonia Synthesis: Old is New Again

Author:

Lee Jae Seong1,Han Gao‐Feng2,Baek Jong‐Beom1ORCID

Affiliation:

1. School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea

2. Key Laboratory of Automobile Materials (Jilin University) Ministry of Education School of Materials Science and Engineering Jilin University 5988 Renmin St. Changchun 130022 China

Abstract

AbstractHydrogen is a promising clean energy source, an alternative to fossil fuels, and can potentially play a crucial role in reducing carbon emissions. The transportation and storage of hydrogen are the biggest hurdles to realizing a hydrogen economy. Ammonia is considered to be one of the most promising hydrogen carriers, because of its high hydrogen content and easy liquefaction in mild conditions. To date, ammonia is mostly produced by the ‘thermocatalytic’ Haber‐Bosch process, which requires high temperature and pressure. As a result, it can only produce ammonia in ‘centralized’ manufacturing systems. Mechanochemistry, a newly emerging method for efficient ammonia synthesis, offers potential advantages over the Haber‐Bosch process. Mechanochemical ammonia synthesis under near ambient conditions can be connected with ‘localized’ sustainable energy systems. In this perspective, the state‐of‐the‐art mechanochemical ammonia synthesis processes will be introduced. Challenges and opportunities are also discussed in relation to its role in a hydrogen economy.

Funder

National Research Foundation of Korea

Ulsan National Institute of Science and Technology

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3