Surface and Grain Boundary Coating for Stabilizing LiNi0.8Mn0.1Co0.1O2 Based Electrodes

Author:

Ahaliabadeh Zahra1ORCID,Miikkulainen Ville1ORCID,Mäntymäki Miia2ORCID,Mousavihashemi Seyedabolfazl1ORCID,Yao Lide3,Jiang Hua3,Huotari Simo4ORCID,Kankaanpää Timo5,Kallio Tanja1ORCID,Colalongo Mattia16

Affiliation:

1. Department of Chemistry and Materials Science (CMAT) School of Chemical Engineering Aalto University Espoo 02150 Finland

2. Department of Chemistry University of Helsinki Helsinki 00014 Finland

3. Department of Applied Physics School of Science Aalto University Espoo 02150 Finland

4. Department of Physics University of Helsinki Helsinki 00014 Finland

5. Umicore Finland Oy Kokkola 67101 Finland

6. European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France

Abstract

AbstractThe widespread use of high‐capacity Ni‐rich layered oxides such as LiNi0.8Mn0.1Co0.1O2 (NMC811), in lithium‐ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life. Here, we introduce an amorphous lithium titanate (LTO) coating via atomic layer deposition (ALD), not only covering NMC811 surfaces but also penetrating cavities and grain boundaries. As NMC811 electrodes suffer from low structural stability during charge and discharge, We combined electrochemistry, operando X‐ray diffraction (XRD), and dilatometry to understand structural changes and the coating protective effects. XRD reveals significant structural evolution during delithiation for uncoated NMC811. The highly reversible phase change in coated NMC811 highlights enhanced bulk structure stability. The LTO coating retards NMC811 degradation, boosting capacity retention from 86 % to 93 % after 140 cycles. This study underscores the importance of grain boundary engineering for Ni‐rich layered oxide electrode stability and the interplay of chemical and mechanical factors in battery aging.

Funder

Tekes

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3