Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries

Author:

Wang Qingyuan1,Liu Yumeng2,Zhang Zidong2,Cai Peng2,Li Haomiao1,Zhou Min1,Wang Wei2,Wang Kangli12ORCID,Jiang Kai12

Affiliation:

1. State Key Laboratory of Advanced Electromagnetic Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China

2. School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractAs a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide‘s high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc‐electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group‐rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group ‐rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference81 articles.

1.  

2.  

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3