Experimental investigation of the effective point of measurement for plane‐parallel chambers used in electron beam dosimetry

Author:

Yasui Kohki12,Nakajima Yujiro23,Suda Yuhi2,Arai Yu2,Takizawa Takuto2,Sakai Kaito12,Fujita Yukio3

Affiliation:

1. Department of Radiological Sciences Komazawa University Graduate School Setagaya‐ku Tokyo Japan

2. Department of Radiation Oncology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Bunkyo‐ku Tokyo Japan

3. Department of Radiological Sciences Komazawa University Setagaya‐ku Tokyo Japan

Abstract

AbstractIn this study, the effective point of measurement (EPOM) for plane‐parallel ionization chambers in clinical high‐energy electron beams was determined experimentally. Previous studies have reported that the EPOM of plane‐parallel chambers is shifted several tens of millimeters downstream from the inner surface of the entrance window to the cavity. These findings were based on the Monte Carlo (MC) simulation, and few experimental studies have been performed. Thus, additional experimental validations of the reported EPOMs were required. In this study, we investigated the EPOMs of three plane‐parallel chambers (NACP‐02, Roos and Advanced Markus) for clinical electron beams. The EPOMs were determined by comparing the measured percentage depth‐dose (PDD) of the plane‐parallel chambers and the PDD obtained using the microDiamond detector. The optimal shift to the EPOM was energy‐dependent. The determined EPOM showed no chamber‐to‐chamber variation, thereby allowing the use of a single value. The mean optimal shifts were 0.104 ± 0.011, 0.040 ± 0.012, and 0.012 ± 0.009 cm for NACP‐02, Roos, and Advanced Markus, respectively. These values are valid in the R50 range from 2.40 to 8.82 cm, which correspond to 6–22 MeV. Roos and Advanced Markus exhibited similar results to those of the previous studies, but NACP‐02 showed a larger shift. This is probably due to the uncertainty of the entrance window of NACP‐02. Therefore, it is necessary to carefully consider where the optimal EPOM is located when using this chamber.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3