Treatment of onion skin waste using dielectric barrier discharge cold plasma processing

Author:

Senguler Berna12,Kirkin Celale1ORCID,Donmez Hilal1,Unal Senanur1

Affiliation:

1. Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak, Istanbul Turkey

2. Department of Gastronomy and Culinary Arts, Faculty of Applied Sciences Istanbul Gelisim University Avcilar, Istanbul Turkey

Abstract

AbstractOnion skin constitutes a major part of industrial food waste, and cold plasma technology can be employed in the treatment of onion skin. Onion skin waste was ground and exposed to dielectric barrier discharge cold plasma (DBDCP) at 40 kV for 10 or 20 min. Samples that were not DBDCP treated were used as the control. The changes in the color, microbial load, total phenolic content (TPC), and antioxidant activity of the onion skin waste upon treatment were evaluated. An increase in the b* and C* values of the onion skin powder (OSP) was obtained after the DBDCP treatment. The DBDCP process also decreased the total mesophilic aerobic bacteria and yeast–mold counts of the OSP by up to 0.92 and 0.97 log cfu/g (colony‐forming units per gram), respectively. In addition, the TPC and antioxidant activity, as determined by 2,2‐diphenyl‐2‐picrylhydrazyl (DPPH) scavenging activity and ferric‐reducing antioxidant power (FRAP) methods, were increased for up to 59% and 28%, respectively, depending on the treatment time. In conclusion, the findings of the study show that using DBDCP processing in the treatment of onion skin waste can reduce microbial count while enhancing TPC and antioxidant activity.

Funder

Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniversitesi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3