Affiliation:
1. Nanchang Hangkong University School of Aeronautical Manufacturing Engineering Honggutan District Nanchang, Province of Jiangxi 330000 China
Abstract
AbstractA twin‐crystal magnesium (Mg) model with 9 different symmetric tilt grain boundary (STGB) angles (20°–80°) with preset nanohole defects is established by atomsk and lammps software. The mechanical behavior of grain boundary (GB) angles on twin‐crystal Mg with cavity defects and its cavity evolution are simulated by the molecular dynamics method with embedded atomic potential, and the plastic deformation mechanism is revealed. The results show that the yield stress decreases with the increase of the STGB Angle during the stretching process. When the GB Angle increases from 20° to 80°, the yield stress decreases from 2.28 to 1.42 Gpa. This is because the larger the STGB Angle is, the larger the Schmidt factor is, and the easier it is to start dislocation slip during the stretching process. On the other hand, the larger the Angle of STGB, the more the number of atomic voids at the interface, and the more the number of dislocation nucleation points. The larger the Angle of STGB, the lower the strength of twinning Mg but the better the plasticity to avoid fracture. The plastic deformation mechanism mainly includes the nucleation of Shockley incomplete dislocation at STGBs, dislocation slip generates stacking faults (SFs), GB migration, and base plane dislocations.
Funder
National Natural Science Foundation of China